当前位置:首页 > C++知识 > 正文内容

如何估算时间复杂度

亿万年的星光4年前 (2021-08-19)C++知识1700

首先:

  常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n^2)<Ο(n^3)<…<Ο(2^n)<Ο(n!)

时间复杂度可以简单理解为最多执行次数。


一、O(1)

一般情况下没有其他循环和递归调用,时间复杂度一般都是O(1)。比如下面这样的代码

#include<iostream>
using namespace std;
int main(){
	int a=0,b=0,x=0,y=0;
	cin>>a>>b;
	x=a+b;
	y=a-b;
	if(x>y){
	 cout<<x;
	}else{
	 cout<<y;
	}
	return 0;
}

二、O(n)

一般情况下,一个循环的时间复杂度是O(n),多个循环并列也是取循环次数最多的那个作为时间复杂度。当数据量增大n倍,耗时增大n倍。

#include<iostream>
using namespace std;
int main(){
	int a=n;
	cin>>n;
	for(int i=0;i<n;i++){
	    cout<<i;
	}
	return 0;
}


三、O(n2)、O(n*m)

双重循环嵌套一般就是O(n2)。当数据量增大n倍,耗时增大n方倍。

#include<iostream>
using namespace std;
int main(){
	int n=0;
	cin>>n;
	for(int i=0;i<n;i++){
	    for(int j=0;j<n;j++){
	        cout<<i;
	    }
	}
	return 0;
}

如果循环嵌套外层循环是n,内层循环是m。

#include<iostream>
using namespace std;
int main(){
	int n=0,m=0;
	cin>>n>>m;
	for(int i=0;i<n;i++){
	    for(int j=0;j<m;j++){
	        cout<<i;
	    }
	}
	return 0;
}

这个时候的时间复杂度是O(n*m)。


四、O(logn)

当数据增大n倍时,耗时增大logn倍。

#include<iostream>
using namespace std;
int main(){
	int n=0;
	cin>>n;
	for(int i=0;i<n;i++){
	   i*=2;
	   cout<<i;
	}
	return 0;
}

本来循环次数是n,现在i*=2了。那么答案是log(2)(n)。

反着想也可以,原来循环n次,现在每次i变成原来的2倍,也就是2的k次方等于n。那么正好就是log(2)(n),即O(log n)


或者下面这样:

#include<iostream>using namespace std;
int main(){
int n=0;
cin>>n;
while((n=n/2)>0){
    cout<<n;
}
 return 0;
}

时间复杂度也是O(logn)


五、O(nlogn)

一般归并排序和堆排序是O(nlogn)。 

常见的是外层循环的时间复杂度是n,内层循环的时间复杂度是logn。

比如下面这样:

for(int i=1; i<=n; i++)
{
	for(int j=1; j<=n; j+=i)
	{
		.....   //复杂度为O(1);
	}
}

注意:外层循环是n,内层循环j每次都增加i。

常见算法的时间复杂度

数据结构时间复杂度最坏情况下的辅助空间复杂度
  最佳平均最差最差
快速排序数组O(n log(n))O(n log(n))O(n^2)O(n)
归并排序数组O(n log(n))O(n log(n))O(n log(n))O(n)
堆排序数组O(n log(n))O(n log(n))O(n log(n))O(1)
冒泡排序数组O(n)O(n^2)O(n^2)O(1)
插入排序数组O(n)O(n^2)O(n^2)O(1)
选择排序数组O(n^2)O(n^2)O(n^2)O(1)
桶排序数组O(n+k)O(n+k)O(n^2)O(nk)
基数排序数组O(nk)O(nk)O(nk)O(n+k)


算法数据结构时间复杂度空间复杂度
  平均最差最差

深度优先搜索 (DFS)Graph of |V| vertices and |E| edges-O(|E| + |V|)O(|V|)

广度优先搜索 (BFS)Graph of |V| vertices and |E| edges-O(|E| + |V|)O(|V|)

二分查找Sorted array of n elementsO(log(n))O(log(n))O(1)

穷举查找ArrayO(n)O(n)O(1)

最短路径-Dijkstra,用小根堆作为优先队列Graph with |V| vertices and |E| edgesO((|V| + |E|) log |V|)O((|V| + |E|) log |V|)O(|V|)

最短路径-Dijkstra,用无序数组作为优先队列Graph with |V| vertices and |E| edgesO(|V|^2)O(|V|^2)O(|V|)

最短路径-Bellman-FordGraph with |V| vertices and |E| edgesO(|V||E|)O(|V||E|)O(|V|)



据结构时间复杂度空间复杂度
 平均最差最差
 索引查找插入删除索引查找插入删除 
基本数组O(1)O(n)--O(1)O(n)--O(n)
动态数组O(1)O(n)O(n)O(n)O(1)O(n)O(n)O(n)O(n)
单链表O(n)O(n)O(1)O(1)O(n)O(n)O(1)O(1)O(n)
双链表O(n)O(n)O(1)O(1)O(n)O(n)O(1)O(1)O(n)
跳表O(log(n))O(log(n))O(log(n))O(log(n))O(n)O(n)O(n)O(n)O(n log(n))
哈希表-O(1)O(1)O(1)-O(n)O(n)O(n)O(n)
二叉搜索树O(log(n))O(log(n))O(log(n))O(log(n))O(n)O(n)O(n)O(n)O(n)
笛卡尔树-O(log(n))O(log(n))O(log(n))-O(n)O(n)O(n)O(n)
B-树O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
红黑树O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
伸展树-O(log(n))O(log(n))O(log(n))-O(log(n))O(log(n))O(log(n))O(n)
AVL 树O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)


扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

【数据结构】队列—基本概念

【数据结构】队列—基本概念

一、基本定义队列是一种先进先出的线性结构,简称FIFO结构。特点就是“先进先出”二、队列的相关概念队头与队尾:允许元素插入的一端称为队尾,允许元素删除的一端称为队头入队:队列的插入操作出队:队列的删除...

树的遍历

在应用树结构解决问题时,往往要求按照某种此项获得树中全部结点的信息,这种操作叫做树的遍历。遍历的方法有很多种。常用的有:A. 先序遍历:先访问根结点,再从左到右按照先序思想遍历各子树。B. 后序遍历:...

2023 CSP 山东地区分数线汇总

地区CSP-XCSP-JCSP-S烟台556648.5临沂516416青岛476753淄博446547.5...

【题解】最短路径问题

【题目描述】平面上有n个点(n≤100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现...

如何计算一个程序的运行时间(防止超时)

再一些OJ系统中,做题的时候常常会超时,但是很多人不知道自己的程序是否会超时,不知道如何检查自己的程序。这篇文章主要介绍几种监测自己程序运行时间的程序。头文件<time.h> ...

指针(二):指针与数组

1.指针与数组的关系    指向数组的指针变量称为数组指针变量。“数组是内存上一块连续的空间”。数组名就是这块连续空间的首地址。2.指针指向数组  &...