当前位置:首页 > 题解目录 > 正文内容

分数求和

亿万年的星光4年前 (2021-01-28)题解目录1933

题目描述】

输入n个分数并对他们求和,并用最简形式表示。所谓最简形式是指:分子分母的最大公约数为1;若最终结果的分母为1,则直接用整数表示。
如: 5/6  、 10/3  均是最简形式,而3/6要化简为1/2, 3/1要化简为3。分子和分母均不为0,也不为负数。

【输入描述】

第一行是一个整数n,表示分数个数,1≤n≤10;
接下来nn行,每行一个分数,用”p/q”的形式表示,不含空格,p,q,均不超过10。

【输出描述】

输出只有一行,即最终结果的最简形式。若为分数,用”p/q”的形式表示。

【样例输入】

2
1/2
1/3

【样例输出】

5/6

【分析】

(1)有一个求最大公约数的函数来化简分数
(2)分子和分母要有通分的过程
(3)注意特殊条件 ,类似 31 只能写成3,不能写成3/1


【参考代码 1】

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define N 1000010
using namespace std;
int a[20],b[20];
//求最大公约数的函数
int gcd(int a,int b)
{
   if(b==0)
       return a;
   return gcd(b,a%b);
}
int main()
{
   int n;
   int cnt=0;
   int fenzi=0,fenmu=1; //用fenzi表示最终的分子,fenmu表示分母,注意分母不能为0
   int divisor=0; //最大公约数
   char s[20];
   cin>>n;
   while(n--)
   {
       scanf("%d/%d",&a[cnt],&b[cnt]); //把n个数读入数组,a是表示分子,b是表示分母
       cnt++;
   }
   for(int i=0;i<cnt;i++)
       fenmu*=b[i];   //通分的过程
   for(int i=0;i<cnt;i++)
       fenzi=fenzi+fenmu*a[i]/b[i]; //计算分子和的过程
   divisor=gcd(fenmu,fenzi);//计算分子分母的最大公约数
   fenmu/=divisor;
   fenzi/=divisor;
   if(fenmu==1)
       cout<<fenzi<<endl;
   else
       cout<<fenzi<<"/"<<fenmu<<endl;
   return 0;
}
阅读剩余的41%

扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

相关文章

小苹果(apple)

【题目描述】小 Y 的桌子上放着n个苹果从左到右排成一列,编号为从1到n。小苞是小 Y 的好朋友,每天她都会从中拿走一些苹果。每天在拿的时候,小苞都是从左侧第1个苹果开始、每隔2个苹果拿走2个苹果。随...

亲和数

【题目描述】自然数a的因子是指能整除a的所有自然数,但不含a本身。例如12的因子为:1,2,3,4,6。若自然数a的因子之和为b,而且b的因子之和又等于a,则称a,b为一对“亲和数” 。求最小的一对亲...

【题解】放苹果(1)

【题目描述】把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。【输入】第一行是测试数据的数目t(0≤t≤20)。以下...

【题解】跳格子

【题目描述】地面上有一排长度为n的格子1-n,每个格子上都有一个数xi,开始时你在位置0,每次你可以向前跳1-2格,然后取走格子上的数,直到跳到位置n+1。取走的数的和就是你的得分,现在你想知道你可能...

【题解】小x与队列

【题目描述】小X正和同学们做列队的练习。有n名同学排成一路纵队,编号为i的同学排在从前往后数第i个位置上,即:初始时的队列为1, 2, 3, ..., n。接下来小X会发出若干条指令,每条指令形如“请...

【题解】Ride to Office

【题目描述】起点与终点相隔4500米。现Charley 需要从起点骑车到终点。但是,他有个习惯,沿途需要有人陪伴,即以相同的速度, 与另外一个人一起骑。而当他遇到以更快的速度骑车的人时,他会以相应的速...