当前位置:首页 > C++知识 > 正文内容

如何估算时间复杂度

亿万年的星光4年前 (2021-08-19)C++知识1897

首先:

  常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n^2)<Ο(n^3)<…<Ο(2^n)<Ο(n!)

时间复杂度可以简单理解为最多执行次数。


一、O(1)

一般情况下没有其他循环和递归调用,时间复杂度一般都是O(1)。比如下面这样的代码

#include<iostream>
using namespace std;
int main(){
	int a=0,b=0,x=0,y=0;
	cin>>a>>b;
	x=a+b;
	y=a-b;
	if(x>y){
	 cout<<x;
	}else{
	 cout<<y;
	}
	return 0;
}

二、O(n)

一般情况下,一个循环的时间复杂度是O(n),多个循环并列也是取循环次数最多的那个作为时间复杂度。当数据量增大n倍,耗时增大n倍。

#include<iostream>
using namespace std;
int main(){
	int a=n;
	cin>>n;
	for(int i=0;i<n;i++){
	    cout<<i;
	}
	return 0;
}


三、O(n2)、O(n*m)

双重循环嵌套一般就是O(n2)。当数据量增大n倍,耗时增大n方倍。

#include<iostream>
using namespace std;
int main(){
	int n=0;
	cin>>n;
	for(int i=0;i<n;i++){
	    for(int j=0;j<n;j++){
	        cout<<i;
	    }
	}
	return 0;
}

如果循环嵌套外层循环是n,内层循环是m。

#include<iostream>
using namespace std;
int main(){
	int n=0,m=0;
	cin>>n>>m;
	for(int i=0;i<n;i++){
	    for(int j=0;j<m;j++){
	        cout<<i;
	    }
	}
	return 0;
}

这个时候的时间复杂度是O(n*m)。


四、O(logn)

当数据增大n倍时,耗时增大logn倍。

#include<iostream>
using namespace std;
int main(){
	int n=0;
	cin>>n;
	for(int i=0;i<n;i++){
	   i*=2;
	   cout<<i;
	}
	return 0;
}

本来循环次数是n,现在i*=2了。那么答案是log(2)(n)。

反着想也可以,原来循环n次,现在每次i变成原来的2倍,也就是2的k次方等于n。那么正好就是log(2)(n),即O(log n)


或者下面这样:

#include<iostream>using namespace std;
int main(){
int n=0;
cin>>n;
while((n=n/2)>0){
    cout<<n;
}
 return 0;
}

时间复杂度也是O(logn)


五、O(nlogn)

一般归并排序和堆排序是O(nlogn)。 

常见的是外层循环的时间复杂度是n,内层循环的时间复杂度是logn。

比如下面这样:

for(int i=1; i<=n; i++)
{
	for(int j=1; j<=n; j+=i)
	{
		.....   //复杂度为O(1);
	}
}

注意:外层循环是n,内层循环j每次都增加i。

常见算法的时间复杂度

数据结构时间复杂度最坏情况下的辅助空间复杂度
  最佳平均最差最差
快速排序数组O(n log(n))O(n log(n))O(n^2)O(n)
归并排序数组O(n log(n))O(n log(n))O(n log(n))O(n)
堆排序数组O(n log(n))O(n log(n))O(n log(n))O(1)
冒泡排序数组O(n)O(n^2)O(n^2)O(1)
插入排序数组O(n)O(n^2)O(n^2)O(1)
选择排序数组O(n^2)O(n^2)O(n^2)O(1)
桶排序数组O(n+k)O(n+k)O(n^2)O(nk)
基数排序数组O(nk)O(nk)O(nk)O(n+k)


算法数据结构时间复杂度空间复杂度
  平均最差最差

深度优先搜索 (DFS)Graph of |V| vertices and |E| edges-O(|E| + |V|)O(|V|)

广度优先搜索 (BFS)Graph of |V| vertices and |E| edges-O(|E| + |V|)O(|V|)

二分查找Sorted array of n elementsO(log(n))O(log(n))O(1)

穷举查找ArrayO(n)O(n)O(1)

最短路径-Dijkstra,用小根堆作为优先队列Graph with |V| vertices and |E| edgesO((|V| + |E|) log |V|)O((|V| + |E|) log |V|)O(|V|)

最短路径-Dijkstra,用无序数组作为优先队列Graph with |V| vertices and |E| edgesO(|V|^2)O(|V|^2)O(|V|)

最短路径-Bellman-FordGraph with |V| vertices and |E| edgesO(|V||E|)O(|V||E|)O(|V|)



据结构时间复杂度空间复杂度
 平均最差最差
 索引查找插入删除索引查找插入删除 
基本数组O(1)O(n)--O(1)O(n)--O(n)
动态数组O(1)O(n)O(n)O(n)O(1)O(n)O(n)O(n)O(n)
单链表O(n)O(n)O(1)O(1)O(n)O(n)O(1)O(1)O(n)
双链表O(n)O(n)O(1)O(1)O(n)O(n)O(1)O(1)O(n)
跳表O(log(n))O(log(n))O(log(n))O(log(n))O(n)O(n)O(n)O(n)O(n log(n))
哈希表-O(1)O(1)O(1)-O(n)O(n)O(n)O(n)
二叉搜索树O(log(n))O(log(n))O(log(n))O(log(n))O(n)O(n)O(n)O(n)O(n)
笛卡尔树-O(log(n))O(log(n))O(log(n))-O(n)O(n)O(n)O(n)
B-树O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
红黑树O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)
伸展树-O(log(n))O(log(n))O(log(n))-O(log(n))O(log(n))O(log(n))O(n)
AVL 树O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(log(n))O(n)


扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

【算法】前缀和与差分(3)二维数组前缀和

【算法】前缀和与差分(3)二维数组前缀和

0.前言前面的一篇文章,介绍了一维数组的前缀和,这篇文章中,介绍一下二维数组的前缀和1.定义二维数组的前缀和就是按照二维数组求和。公式如下:那二维前缀和中一个f[i][j]表示的意思就是以(1,1)为...

【数论】快速乘

【数论】快速乘

上一篇文章简单说了龟速乘的问题,有人觉得龟速乘还是太慢了,有没有什么办法再快一点,实际是有的,就是我们今天介绍的 快速乘。快速乘的原理和龟速乘不同,快速乘并不是基于二进制和位运算,严格来说,快速乘是利...

【数论】常见的距离度量方法

【数论】常见的距离度量方法

一、欧式距离欧式距离(Eucliden Metric,也是欧几里得度量)是一个通常采用的距离定义,旨在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点距离)。在二维和三维空间中的欧氏距...

树的存储结构

【方法1:数组】称为父亲表示法const int m=10;          ...

【题解】组合数学

【题解】组合数学

一、排列与组合口诀:有序排列,无序组合,分类相加,分步相乘。1.排列数公式:表示的含义是从n个数中选出m个进行排队,有多少种不同的排法。从n个不同的元素中任取m(m≤n)个元素的所有排列的个数,叫做从...

排序算法中的一些分类

排序算法中的一些分类

一、比较和非比较的排序二、时间复杂度和稳定性如何界定一个排序算法是否是稳定的?假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=...