当前位置:首页 > C++知识 > 正文内容

【数论】龟速乘

亿万年的星光3年前 (2023-02-04)C++知识7991

我们前面一篇文章学习了快速幂。它可以解决两类问题:

  • a^b,

  • (a^b)%c

对于第一类,我们可以使用递归法或者迭代法可以求出,为了计算的快,我们可以引入位运算操作,但是目前来看,无论怎么优化都不能超过long long。

对于第二类,是快速幂的优点所在,通过 (a*b)%m=(a%m * b%m) %m公式,我们可以将结果运算范围大大减小,使运算结果保持在m范围以内。

但是,快速幂并不是万能的,比如下面这个例子求(a^b)%m。

19260817 2333333 1234567654321

也就是(19260817^233333)%1234567654321。那么很明显,快速幂也会爆掉。因为取模的数> 1e9后,两个数相乘就会爆 long long了(高精度除外)。


那么这样的题目应该怎么处理,这就是我们今天的主角:龟速乘


一、龟速乘

简单来说,当形如 (a*b)%c这种表达式进行求解计算时,如果a,b的值都>=1e9,特别当c的值也>=1e9时,long long 会爆掉,此时采用龟速乘的方式来进行计算。

顾名思义,龟速乘是比较慢的,主打的就是 慢工出细活

代码模板如下:

long long slowmul(long long x,long long y,long long mod) {
	long long ans=0;
	while(y) {
		if(y&1==1){
		 ans+=x;
		 ans%=mod;
		}
		x=x+x;
		x%=mod;
		y>>=1;
	}
	return ans;
}


二、龟速乘原理

要知道龟速乘的原理,首先要回到小学阶段一开始讲乘法原理的时候:乘法的本质就是加法

比如下面这个例子:

我们计算3*5。

3*5 = 3*(4+1)   //这个地方为什么是4+1,而不是2+3?
    = 3*4 + 3*1

//看到这里,有没有什么想法
//如果没有,我们借助一个图来清楚描述一下刚才的过程
7*13=3*(8+4+1)


上面的这个过程,1 1 0 1 对应 8 4 2 1。非常巧合的一件事,8 4 2 1 就是2^3、2^2、2^1、2^0。很显然,我们回到了二进制,而龟速乘就是利用了这个原理来进行操作的。

在上面的过程中,8 4 2 1是二进制中基,从左往右是除2,从右往左是乘2,对应的二进制操作中右移和左移。

那么我们再来详细看看代码是怎么处理的。

我们用这种方法求7*13:

int slowMult(int a,int b){ //a为基底,b为乘数,即a*b
	int ans=0; //ans即最终结果
	while(b) {
		if(b&1) 
			ans+=a; // 判断二进值是否为1
		a+=a; //基底乘2
		b>>=1;//位运算
	}
	return ans;
}

注意,此方法区别于我们前面讲的迭代法求快速幂。

//迭代法求快速幂,求a^b
#include<bits/stdc++.h>
using namespace std;
long long pow_d(long  a,long  b){
    long ans=1;
    while(b>0){
        if(b&1){//如果b的二进制末尾为1 ,就相当于被选中了。
        //就如2^13 ==> 2^(13==>1101)==> 2^(1101) ==> 3 2 0 号为 1 那么被选中 ==> 2^13 = 2^8 *  2^4 * 2^1
            ans=ans*a;//令ans累积上a 
        }
        a=a*a;//令a平方 
        b>>=1;//将b的二进制右移一位即 
    }
    return ans;
}
int main(){
    long long  a,b;
    cin>>a>>b; 
    long long  result=pow_d(a,b);
    cout<<result<<endl;

区别:快速幂里的x是指数级增长,而龟速乘变成了翻倍。


我们再回来看(a*b)%c

long long slowmul(long long x,long long y,long long mod) {
	long long ans=0;
	while(y) {
		if(y&1==1){
		 ans+=x;
		 ans%=mod;
		}
		x=x+x;
		x%=mod;
		y>>=1;
	}
	return ans;
}


扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

符号与快捷键

符号与快捷键

一、键盘二、符号与快捷键1.常见符号加号:shift 加 =减号:-乘号:shift 加 8  (*)除号:/取余(模):shift 加 5    (%)【示例】#inc...

取模运算总结——数论

编程竞赛有相当一部分题目的结果过于庞大,整数类型无法存储,往往只要求输出取模的结果。例如(a+b)%p,若a+b的结果我们存储不了,再去取模,结果显然不对,我们为了防止溢出,可以先分别对a取模,b取模...

C++读取磁盘文件

0.前言简单介绍一下C++读取文件的基本操作。关键技术:freopen() 文件的打开函数 FILE *fp fp=fopen(文件名,使用文件方式) 例如: fp...

C++中的max和min函数(最大值,最小值)

1.头文件      最大值最小值函数所在头文件是#include<algorithm>2.用法#include<iostream> #incl...

【贪心】区间选点

【贪心】区间选点

【题目描述】数轴上有n个闭区间[ai, bi],取尽量少的点,使得每个区间内都至少有一个点。(不同区间内含的点可以是同一个,1<=n<=10000,1<=ai<=bi<=...

质数(素数)的判断

一、定义法// 1 定义法(除了1和他本身之外,没有任何一个数能被整除)(试除法) bool is_prime3(unsigned long lon...