当前位置:首页 > C++目录 > 正文内容

【题解】盈亏问题

亿万年的星光2年前 (2024-07-16)C++目录1802

【题目描述】

一群人团购一件物品:

如果每人出 a元,所付总金额比物价多出了x 元;

如果每人少出 1元,也就是每人出a-1元,所付总金额比物价少了y元。

给定 a,x,y求参与团购的人数及该物品的价格。

【输入描述】

单独一行:三个整数:a,x及y

【输出描述】

单独一行:两个整数。第一个整数表示参与的人数,第二个整数表示物品的价格,中间用一个空格分开。

【样例输入】

8 3 4

【样例输出】

7 53

【数据范围】

  • 1≤a≤1000

  • 1𝑥10001≤x≤1000

  • 1𝑦10001≤y≤1000


这个问题可以通过设定方程组求解来解决。设 n 为人数,p 为物品的价格。
根据题目描述:
如果每个人出 a 元,总金额为 n * a,比物品的价格多了 x 元,即 n * a = p + x。
如果每个人出 a-1 元,总金额为 n * (a - 1),比物品的价格少了 y 元,即 n * (a - 1) = p - y。
我们可以通过解这两个方程来求解 n 和 p。
#include <iostream>
using namespace std;

int main() {
    int a, x, y;
    cin >> a >> x >> y;

    // 方程一: n * a = p + x
    // 方程二: n * (a - 1) = p - y
    
    // 通过消去法解方程组
    // 设 p = n * a - x 代入第二个方程:
    // n * (a - 1) = n * a - x - y
    // 化简可得:
    // n * (a - 1) = n * a - x - y
    // n * a - n = n * a - x - y
    // - n = - x - y
    // n = x + y

    int n = x + y;
    int p = n * a - x;

    cout << n << " " << p << endl;

    return 0;
}



方法二:直接用循环模拟

#include <iostream>
using namespace std;

int main() {
    int a, x, y;
    cin >> a >> x >> y;
	int n,p;
    // 方程一: n * a = p + x
    // 方程二: n * (a - 1) = p - y
    
  	for(n=1;;n++){
  		p=a*n-x;
  		if((a-1)*n==p-y){
  			cout << n << " " << p << endl;
  			return 0;
		}
	}

    

    return 0;
}


    扫描二维码推送至手机访问。

    版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

    分享给朋友:

    相关文章

    二维数组的差分

    一、基本概念二维数组差分是一种高效处理区间修改操作的数据结构技巧,常用于解决矩阵区域增减问题。差分是前缀和的逆运算,对于二维数组,差分数组 diff[i][j] 表示原数组 a[i][j] 与 a[i...

    【数论】二项式定理

    【数论】二项式定理

    一、基本概念上面这个式子就叫做二项式定理,又称牛顿二项式定理,该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。 初中高中阶段比...

    C++ 如何隐藏光标

    在C++控制台做小游戏的时候,光标一直在闪,影响体验效果,我们可以通过下面的函数隐藏光标位置。void HideCursor(){ CONSOLE_CURSOR_INFO cu...

    【数论】同余定理与同余方程

    定义同余定理是数论中的一个重要概念。它的定义是这样的:给定一个整数m,如果两个整数a和b满足(a-b)能够被m整除,即(a-b)/m 得到一个整数,那么就成整数a和b对模m同余,记作a≡b(mod m...

    【题解】采药的最短路径

    【题目描述】少年李逍遥的婶婶病了,王小虎介绍他去一趟仙灵岛,向仙女姐姐要仙丹救婶婶。孝顺的李逍遥闯进了仙灵岛,克服了千险万难来到岛的中心,发现仙药摆在了迷阵的深处。迷阵由M×N个方格组成,有的方格内有...

    【初级篇】函数(一)

    【初级篇】函数(一)

    0.函数的引入为什么要用函数呢?比较官方的说法是,过程的复用,你的一段逻辑,你有一段逻辑不断的在复用,就封装成函数去调用它。通俗的说法就是,把重复的过程集中到一块。例如,大家都学过如何求正方形的面积,...