当前位置:首页 > C++目录 > 正文内容

最小生成树(1)

亿万年的星光1年前 (2024-08-31)C++目录1808

一、定义

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。


二、概述

在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此的权重,若存在 T 为 E 的子集且为无循环图,使得联通所有结点的的 w(T) 最小,则此 T 为 G 的最小生成树

最小生成树其实是最小权重生成树的简称。

三、生成树


要求最小生成树,先来理解什么是生成树。

生成树的定义:一个连通图的生成树是一个极小的连通子图,它包含图中全部的n个顶点,但只有构成一棵树的n-1条边。

可以看到一个包含3个顶点的完全图可以产生3颗生成树。那么对于包含n个顶点的无向完全图最多包含n^n-2 个生成树。


生成树的特点:


  • 一个连通图可以有多个生成树;

  • 一个连通图的所有生成树都包含相同的顶点个数和边数;

  • 生成树当中不存在环;

  • 移除生成树中的任意一条边都会导致图的不连通, 生成树的边最少特性;

  • 在生成树中添加一条边会构成环。

  • 对于包含n个顶点的连通图,生成树包含n个顶点和n-1条边


四、最小生成树

所谓一个 带权图 的最小生成树,就是原图中边的权值最小的生成树 ,所谓最小是指边的权值之和小于或者等于其它生成树的边的权值之和。

比如上面这个,因为n个顶点的联通图,所以生成树包含n个顶点和n-1条边。

所以,很明显选3条边连起来肯定是1、2、3这个三个权重最小,那么1、2、3一共有两种选法,所以最小生成树有两个。













扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

如何判断回文数/回文串

所谓回文,就是从左往右读和从右往左读都是一样的,这样的数字或者字符称为回文数/回文字符。做题的时候经常能看到判断回文操作。判断回文的一般有两种,一种是数字类型,一种是字符类型。两种分别介绍一下。一、回...

树的存储结构

【方法1:数组】称为父亲表示法const int m=10;          ...

C++读取磁盘文件

0.前言简单介绍一下C++读取文件的基本操作。关键技术:freopen() 文件的打开函数 FILE *fp fp=fopen(文件名,使用文件方式) 例如: fp...

C++中的宏

一、预处理和编译器    首先,预编译器就是在编译器之前运行,换句话说,预编译器根据程序员的指示,决定实际要编译的内容。预编译器编译指令都以 # 开头。例如:1...

C++ 如何隐藏光标

在C++控制台做小游戏的时候,光标一直在闪,影响体验效果,我们可以通过下面的函数隐藏光标位置。void HideCursor(){ CONSOLE_CURSOR_INFO cu...

【数据结构】队列—基本操作

【数据结构】队列—基本操作

一、C++实例分析       C++队列queue模板类的定义在<queue>头文件中,queue 模板类需要两个模板参数,一个是元素类型,一个容...