当前位置:首页 > C++知识 > 正文内容

最小生成树(1)

亿万年的星光1年前 (2024-08-31)C++知识1506

一、定义

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。


二、概述

在一给定的无向图G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即),而 w(u, v) 代表此的权重,若存在 T 为 E 的子集且为无循环图,使得联通所有结点的的 w(T) 最小,则此 T 为 G 的最小生成树

最小生成树其实是最小权重生成树的简称。

三、生成树


要求最小生成树,先来理解什么是生成树。

生成树的定义:一个连通图的生成树是一个极小的连通子图,它包含图中全部的n个顶点,但只有构成一棵树的n-1条边。

可以看到一个包含3个顶点的完全图可以产生3颗生成树。那么对于包含n个顶点的无向完全图最多包含n^n-2 个生成树。


生成树的特点:


  • 一个连通图可以有多个生成树;

  • 一个连通图的所有生成树都包含相同的顶点个数和边数;

  • 生成树当中不存在环;

  • 移除生成树中的任意一条边都会导致图的不连通, 生成树的边最少特性;

  • 在生成树中添加一条边会构成环。

  • 对于包含n个顶点的连通图,生成树包含n个顶点和n-1条边


四、最小生成树

所谓一个 带权图 的最小生成树,就是原图中边的权值最小的生成树 ,所谓最小是指边的权值之和小于或者等于其它生成树的边的权值之和。

比如上面这个,因为n个顶点的联通图,所以生成树包含n个顶点和n-1条边。

所以,很明显选3条边连起来肯定是1、2、3这个三个权重最小,那么1、2、3一共有两种选法,所以最小生成树有两个。













扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

C++中双冒号(::)的用法

一、作用域符号前面一般是类名称,后面一般是该类的成员名称,C++为例避免不同的类有名称相同的成员而采用作用域的方式进行区分如:A,B表示两个类,在A,B中都有成员member。那么A::member就...

【STL】二分查找函数(算法)—binary_search

【说明】binary_search() 实现了一个二分查找算法。它会在前两个参数指定范围内搜索等同于第三个参数的元素。指定范围的迭代器必须是正向迭代器而且元素必须可以使用 < 运算符来比较。这个...

拓扑排序

拓扑排序

一、定义对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边<u,v>∈E(G),则...

C++中的溢出

一、编程中的溢出   溢出是C++语言中最常见的漏洞。最常见的溢出包括数组溢出、数溢出、缓冲区溢出、指针溢出以及栈溢出。二、数组溢出    ...

【C++图形化编程】鼠标函数及鼠标画板

【C++图形化编程】鼠标函数及鼠标画板

0.前言这篇文章简单介绍一下利用鼠标画图的程序#include<graphics.h> #include<conio.h> int main(){ initg...

判断闰年

代码参考:#include<iostream>  using namespace std; //判断闰年的函数  int leap(...