当前位置:首页 > C++目录 > 正文内容

【数论】杨辉三角

亿万年的星光3年前 (2023-02-01)C++目录3627

一、起源

 杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。

可以看出,它与上节课讲的二项式系数一样。


二、特点

  • 每个数等于它上方两数之和。

  • 每行数字左右对称,由1开始逐渐变大。

  • 第n行的数字有n项。

  • 前n行共[(1+n)n]/2 个数。

  • 第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。

  • 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。

  • 每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即

  • C(n+1,i)=C(n,i)+C(n,i-1)。

  • (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。

  • 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。

  • ……



三、实现方式

二维数组实现:

#include<bits/stdc++.h>
using namespace std;
#define N 100
int main() 
{
	int a[N][N];
	int n,i,j; 
	cin>>n;
	for(i=1;i<=n;i++)
	 for(j=1;j<=i;j++)
	 {
	 	if(j==1||j==i)//该行的第一个和该行的最后一个数据都是1 
	  		a[i][j]=1;
		else	  
	  		a[i][j]=a[i-1][j-1]+a[i-1][j];//杨辉三角基本公式
	 }
	 //下面为输出数据 
	 	for(i=1;i<=n;i++)
	 	{
	 		for(j=1;j<=i;j++)
	 		{
	 			cout<<a[i][j];
		  	}
		  cout<<endl;
	 	}
 		return 0;
}


扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

求阶乘的方法

1.普通求法#include<iostream> using namespace std; int main(){ int sum=1;...

混合背包

1.问题定义:混合背包问题是经典背包问题的一个变种,其中物品的类型不单一,而是混合了以下三种类型:01 背包物品:每种物品最多只能选一次。完全背包物品:每种物品可以选择无限次。多重背包物品:每种物品有...

最小生成树—Kruskal(克鲁斯卡尔)算法

最小生成树—Kruskal(克鲁斯卡尔)算法

一、算法描述在一个连通加权无向图中,找到一棵最小生成树。即,找到连接所有顶点的、权值总和最小的树,且树中不包含任何环。二、核心思想贪心策略:每次从未选择的边中,选取一条权值最小的边。避免环路:如果加入...

【题解】盈亏问题

【题目描述】一群人团购一件物品:如果每人出 a元,所付总金额比物价多出了x 元;如果每人少出 1元,也就是每人出a-1元,所付总金额比物价少了y元。给定 a,x,y求参与团购的人数及该物品的...

unsigned

在一些代码中,经常能看到unsigned这种数据类型,比如下面这样的。#include<iostream> using namespace std; int&nbs...

【数论】二项式定理

【数论】二项式定理

一、基本概念上面这个式子就叫做二项式定理,又称牛顿二项式定理,该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。 初中高中阶段比...