当前位置:首页 > 算法 > 正文内容

【贪心】----找零钱问题

亿万年的星光5年前 (2021-01-28)算法21400

一、找零钱问题

例题1
有 1 元,5元,10元,20元,100元,200元的钞票无穷多张。现在使用这些钞票支付X元,最少需要多少张钞票。


X = 628

最佳支付方法:

3张200块的,1张20块的,1张5块的,3张1块的

共需3+1+1+3 = 8张
直觉告诉我们:尽可能多的使用面值较大的钞票!
贪心法: 遵循某种规律,不断贪心的选取当前最优策略的算法设计方法。


分析:面额为1元、5元、10元、20元、100元、200元,任意面额是比自己小的面额的倍数关系。 所以当使用一张较大面额钞票时,若用较小面额钞票替换,一定需要更多的其他面额的钞票!

代码实现:

#include<cstdio>
#include<iostream>
using namespace std;
int main(){
   const int RMB[]= {200,100,20,10,5,1};
   const int NUM = 6;//6种面值
   int X = 628;
   int count = 0;
   for(int i= 0;i< NUM;i++){
       int use = X / RMB[i];需要面额为RMB[i]的use张
       count + = use;
       X = X -RMB[i] * use;
       printf("需要面额为%d 的%d张",RMB[i],use);
       printf("剩余需要支付金额%d.\n",X);
   }
   printf("总共需要%d张\n",count);
   return 0;
}

为何这么做一定是对的?

面额为 1元,5元,10元,20元,100元,200元,任意面额是比自己小的面额的倍数关系。

所以当使用一张较大面额钞票时,若使用较小面额钞票替换,一定需要更多的其他面额的钞票。

例如:

5=1+1+1+1+1

10=5+5

20=10+10

100=20+20+20+20+20

200=100+100

故:当前最优解即为全局最优解,贪心成立。


例题2
有1元,5元,6元的纸币,现在用这些钞票支付K元,至少多少张纸币?


经我们分析,这种情况是不适合用贪心算法的,因为我们上面提供的贪心策略不是最优解。比如,要支付10元的话,按照上面的算法,至少需要1张6元的,4张1元的,而实际上最优的应该是2张5元的。


例题3:假设1元、2元、5元、10元、20元、50元、100元的纸币分别有a,b,c,d,e,f,g张。现在要用这些钱来支付m元,至少要用多少张纸币?如果能支付输出最少支付的张数,如果不能支付,输出-1。

#include<iostream>  
#include<algorithm>  
using namespace std;  
const int N=7;  
int Count[N]={3,0,2,1,0,3,5}; //每种面值的数量
int Value[N]={1,2,5,10,20,50,100}; //面值
int solve(int money)  
{  
   int num=0;  
   for(int i=N-1;i>=0;i--)  
   {  
       int c=min(money/Value[i],Count[i]);  
       money=money-c*Value[i];  
       num+=c;  
   }  
   if(money>0) num=-1;  
   return num;  
}  
int main()  
{  
   int money;  
   cin>>money;  
   int res=solve(money);  
   if(res!=-1) cout<<res<<endl;  

   else cout<<"-1"<<endl;    return 0; 

}

考虑一下,如果不同面值的钞票数量有限制,能不能直接用贪心算法。


扫描二维码推送至手机访问。

版权声明:本文由青少年编程知识记录发布,如需转载请注明出处。

分享给朋友:

相关文章

【分治】----快速幂

【分治】----快速幂

1.幂幂(power)是指乘方运算的结果。n^m指该式意义为m个n相乘。把n^m看作乘方的结果,叫做n的m次幂,也叫n的m次方。2.幂的数学表示和规则2^3  *   2...

【贪心】----最优装载、背包、乘船问题

【贪心】----最优装载、背包、乘船问题

1.最优装载题目描述:有n个物体,第i个物体的重量为wi(wi为正整数)。选择尽量多的物体,使得总重量不超过C。【分析】由于只关心选择的物品的最大数量(而不是最大重量,最大重量需要考虑DP),所以装重...

【图论】迪杰斯特拉算法

【图论】迪杰斯特拉算法

迪杰斯特拉算法是由荷兰计算机科学家艾兹赫尔・迪杰斯特拉于 1956 年提出的单源最短路径算法,用于求解带权有向、 无向图中,从一个源节点到其余所有节点的最短路径问题(要求图中所有边的权值非负)。一、核...

【算法】二叉树(1):二叉树及其编号

【算法】二叉树(1):二叉树及其编号

0.前言        二叉树(Binary Tree)的递归定义如下:二叉树要么为空,要么由根结点(root)、左子树(left...

图论—拓扑排序

前序文章:拓扑排序 - C++目录 - 青少年编程知识记录一、简述拓扑排序是针对 有向无环图(DAG, Directed Acyclic Graph) 的一种排序算法,其核心目标是...

【算法】动态规划—区间DP问题

一、定义区间DP是动态规划的一种特殊形式,主要用于解决涉及区间操作的问题,比如合并区间、分割区间、区间匹配等。其核心思想是通过枚举区间的划分点,将大区间的问题分解为小区间的子问题,逐步求解并保存中间结...